Scattering for critical wave equations with variable coefficients

نویسندگان

چکیده

Abstract We prove that solutions to the quintic semilinear wave equation with variable coefficients in ${{\mathbb {R}}}^{1+3}$ scatter a solution corresponding linear equation. The are small and decay as $|x|\to \infty$ , but allowed be time dependent. proof uses local energy estimates establish of $L^{6}$ norm $t\to .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted L-estimates for Dissipative Wave Equations with Variable Coefficients

We establish weighted L2-estimates for the wave equation with variable damping utt −∆u+ aut = 0 in R, where a(x) ≥ a0(1+ |x|)−α with a0 > 0 and α ∈ [0, 1). In particular, we show that the energy of solutions decays at a polynomial rate t−(n−α)/(2−α)−1 if a(x) ∼ a0|x|−α for large |x|. We derive these results by strengthening significantly the multiplier method. This approach can be adapted to ot...

متن کامل

Decay Estimates for Wave Equations with Variable Coefficients

We establish weighted L2−estimates for dissipative wave equations with variable coefficients that exhibit a dissipative term with a space dependent potential. These results yield decay estimates for the energy and the L2−norm of solutions. The proof is based on the multiplier method where multipliers are specially engineered from asymptotic profiles of related parabolic equations.

متن کامل

Discrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients

This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...

متن کامل

An Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients

In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...

متن کامل

Linear fractional differential equations with variable coefficients

This work is devoted to the study of solutions around an α-singular point x0 ∈ [a, b] for linear fractional differential equations of the form [Lnα(y)](x) = g(x, α), where [Lnα(y)](x) = y(nα)(x)+ n−1 ∑ k=0 ak(x)y (kα)(x) with α ∈ (0, 1]. Here n ∈ N , the real functions g(x) and ak(x) (k = 0, 1, . . . , n−1) are defined on the interval [a, b], and y(nα)(x) represents sequential fractional deriva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 2021

ISSN: ['1464-3839', '0013-0915']

DOI: https://doi.org/10.1017/s0013091521000158